Independent sales reps, US Coatings is interested in working with you. Check out our independent sales rep page to learn more and request additional information.

Learn more about becoming an independent sales rep.

Uncategorized

VSC 1200: An advanced polyurethane industrial maintenance coating with superior long term performance

VSC 1200: An advanced polyurethane industrial maintenance coating with superior long term performance

US Coatings is excited to introduce a new 2K polyurethane finish and surface-tolerant epoxy mastic system that outperforms competing systems in almost every way—at no added cost.

Developed by Valentus Specialty Chemicals, the VSC 1200 Topcoat and VSC 1100 Primer are more durable, sustainable and productive on the job. This improved performance is thanks to the groundbreaking Tetrashield™ protective resin developed by Eastman Chemical Company.

High-performance industrial maintenance coating system

VSC 1200 Topcoat and VSC 1100 Primer represent the next-generation of heavy-duty industrial maintenance coatings. Owners will like the system’s superior asset protection for the price while contractors will enjoy the ease of use of this system leading to a lower overall cost of ownership for industrial asset owners. The performance-driven marriage of the VSC 1100 primer and the Tetrashield-enhanced VSC 1200 finish is a winning combination in the fight against corrosion with an attractive maintenance price tag.

VSC 1200 Topcoat

VSC 1200 Topcoat is a hard, tough and extremely durable two-part (4:1) solvent-based topcoat developed by Valentus Specialty Coatings using Eastman Chemical Company’s Tetrashield™ protective resin. Tetrashield ™ is the breakthrough at the heart of this heavy-duty industrial maintenance coating that provides the following advantages:

  • Consistent film build and easier application.
  • Exceptional adhesion.
  • Outstanding weathering, including superior gloss and color retention over standard acrylic-polyurethanes.
  • Contractor-friendly with longer pot life and shorter dry time compared to traditional acrylic coating systems.
  • Wide latitude application conditions with long recoat time, fast dry to the touch and faster through cure even at lower temperatures.
  • Environmentally-friendly formula uses high-solids formulation that requires no thinning solvents, thus reducing VOC emissions.

VSC 1100 Primer

VSC 1100 Primer is a two-part (4:1) epoxy mastic exhibiting outstanding wetting properties (for less than ideal surface preparation) and excellent film hardness for long term durability. Performance testing shows that it vastly outperforms competing primers. It boasts the following key qualities:

  • Superior adhesion to a wide range of surfaces, including steel, aluminum and concrete.
  • Exceptional corrosion resistance.
  • Superior wetting properties to perform even on marginally-prepared surfaces.
  • Lower-temperature cure.
  • Accepts a wide variety of weathering or chemical-resistant finishes.

Eastman Tetrashield™: Breakthrough protective resin

With the advanced Tetrashield™ protective resin at its core, VSC 1200 Topcoat provides more flexibility in application while providing superior performance in harsh environments over the long term.

The resin responsible for the superior performance has its origins elsewhere in the chemical industry. Before there was Tetrashield™, there was Tritan™—a BPA-free TMCD polyester Eastman developed that offered enhanced clarity, toughness, chemical resistance and impact strength for products used in medical, household and retail applications.

Eastman chemists then developed the Tetrashield™ resin to provide in the coatings industry the benefits that Tritan™ offered for consumer products. The result is a heavy-duty industrial maintenance coating that exhibits premium performance without a premium price. Coating projects are shorter, the coating dries faster and critical assets are put back in service sooner—and that keeps costs in check.

Find out more about how industrial coating projects can be made easier by reading our guide to a painless painting project. If you want to have a conversation about an upcoming job and whether the VSC 1200 Topcoat / 1100 Primer system is right for your site, let’s talk.

Uncategorized

VSC 1200: An advanced polyurethane industrial maintenance coating with superior long term performance

“Selecting the Right Coating – The 4 Basic Questions”

If one coating could do everything, coating selection would be limited to color and gloss choices and specification writing would be relatively simple.  Since that magic coating does not (yet) exist, we are left with hundreds of selections to choose from.  Many coatings will indeed perform multiple functions and are quite versatile in their many uses.  These then become very popular.  However real-world situations often demand more specific performance requirements that necessitate the selection of a more appropriate coating or coating system.

This article will address the key elements that influence coating selection.  These elements will center around “needs” … Performance Needs, Application Needs, Budget Needs (Restrictions), and Other (Special) Needs.  To uncover and define the “needs” we will approach the coating selection process through a series of four basic questions that the specifier, engineer or owner need to provide answers.  Only in this way can the proper selection be made that will narrow down the hundreds of coating choices to the “best fit” options (assuming one exists).  Sometimes however, the specific need or requirement exceeds the existing coating technology and compromises must be made to ensure a proper application.

Question #1: 

What is being coated and why is it being coated?

The question sounds pretty basic, but answers can be surprisingly deceptive. In one example, the reason for painting a vessel could simply be because the CEO of the company is making a plant visit next month.  Appearance then means everything and no one is really interested in the benefits of a 25-year corrosion resistant coating system.  The answer to this question exposes the real reason for painting, the scope of the project and the expectations of the owner.

Question #2:

What exposure will the item see?

This is perhaps the real “meat and potatoes” question to be answered.  It tells us what the real environment the coating will be exposed to.  There are many parts to this question which include;

  1. Is the item exposed to an exterior (weathering, marine, industrial) environment or inside (mild, moderate or harsh exposures such as shower rooms or food process areas)?
  2. Are there any elevated temperature conditions?
  3. Are there any harsh chemical fumes or anticipated splash and spills of chemicals?
  4. Will the coating be covered up with insulation?
  5. Will there be any thermal cycling/shock?
  6. How frequent will the coating be cleaned and with what chemicals?
  7. Will the coating see any abrasion? What type (cutting or small particulate)?
  8. What is the existing condition of the substrate (new steel, contaminated steel, rusted steel, old coatings)?
  9. What is the condition of existing coatings?

 

Question #3:

How, when and where will the item be painted?

Answers to this question will define how the painting project will be handled logistically; whether shop applied, field applied or in-situ at an operating plant.  It may uncover the need for a coating to handle early rain exposure or cold temperature cure. Certain coating systems will handle shop application better than others and will have less shipping damage to deal with later. If spraying the coating is not possible (overspray problems) then coatings that can be easily brush or rolled must be selected. If the speed of completion of the project is critical (most of course are) then fast dry/fast cure products will be preferred.  In many operating plants, open abrasive blasting (for optimal service cleanliness and profile requirements) may not be possible. While this restriction is fairly common, products that have surface tolerant properties must be selected. And while these products are technologically advanced, products that require higher degrees of cleanliness are preferred for longer service lives. Compromises must be made depending on what can’t be done.

Question #4:

What are the owner’s expectation in terms of service life?

On its face value, one would think that the answer should be “as long as possible”.  This is not always the case; especially with limited budgets.  In the earlier case where the CEO was to visit the plant, the need to “freshen-up” a vessel could be done rather inexpensively using a coating system with a minimal design life at minimal cost.  The argument makes even more sense if the vessel is to be dismantled in say 5 years.  It makes no sense to select a 30-year paint system for that vessel.  On the other hand, it may indeed make perfect sense to select a long-term service life system for say an elevated water tank with a design life of 90 years … and one that has the local high school mascot painted on its exterior.  Long term corrosion protection and long term appearance are vitally important.  In the end, one can choose a 3-5 year system, a 10-15 year system or a 25-30 year coating system.  The longer service life systems will cost more in terms of material costs and labor (surface preparation and application).

 

Summary

In the end, it is best to discuss your coating needs with a coating professional; one that will walk you through the basic needs analysis outlined here and match the right coating system for your specific set of circumstances and expectations of service life.

 

Uncategorized

VSC 1200: An advanced polyurethane industrial maintenance coating with superior long term performance

“The Top Two Considerations of Writing Coating Specifications: Performance-Based versus Specific Named Products”   

A coating specification serves many purposes.

In its basic use, it provides a roadmap for the proper installation of a coating system. Any number of painting standards are often referenced to provide the applicator or end user proper guidelines for carrying out the specified surface preparation and proper application of the specified coating or coating system.  The specification as written already assumes that the coatings specified are suitable for the exposure and will meet the expectations of the owner.

Unfortunately; all too often, specifications are poorly written, can cause ambiguities, fail to account for problems that may come up (example: failing to specify cold-cure products during winter painting) and probably the most problematic (to the end customer) specifying the wrong products.  Those are doomed to early failure.  If the products that are specified are wrong for the application; the rest of the specification is moot.

This article will discuss two commonly used types of coating specifications; one that uses “performance-based” requirements and the other simply calls out “specific named products”.  The assumption (for this article) is that the specification as written will indeed handle the exposure and will meet the owner’s needs and expectations.  A separate article will discuss how to select the right coating system.

Performance Based Specifications

These specifications do not call our specific products by name, but rather list a series of performance requirements (minimum performance) to which the candidate system must comply. It may call out a more general performance requirement or even reference independent (3rd party) specifications such as SSPC (Society for Protective Coatings) http://www.sspc.org/ or MPI (Master Painters Institute) http://www.paintinfo.com/index.asp or others.  Often, each coating (primer, intermediate coat and/or finish) has specific performance requirements listed.

Well written specifications call out specific requirements that will satisfy the needs of the project.  For example, it may call out a certain corrosion resistance for the primer tested to say ASTM B117 (commonly known as the Salt Fog test).  It should spell out the extent of the test (say 500 hours) and then spell out the minimum performance requirement (say no more than 2 mm undercutting at the scribe with no plane blistering or rusting).  A poorly written specification will simply say “tested to 500 hours in Salt Fog cabinet” without any performance requirement.  Testing without performance requirements is meaningless.  Any product can be “tested”.

A finish coating may have performance requirements written around weathering resistance (gloss and color retention) or abrasion/scratch resistance.  In these cases, certain test standards are referenced and minimum performance requirements are defined. Examples of some of the common tests are depicted in the chart below.

A couple words of caution when using or interpreting performance-based specifications:

  1. Be careful that the performance test used actually matches how the coating will be used. For example it makes little sense to call out a weathering performance on a primer that will be topcoated.  Likewise, calling out a Salt Fog test solely on the finish coat makes no sense.  The test must match the intended use of the specific coating or coating system.
  2. Be careful when interpreting submitted coatings for consideration that are “close” to meeting the specification. There are countless examples of coatings that “miss” meeting the specification because of a too strict interpretation of the requirement.  For example:  When comparing two finish coats that have abrasion resistant numbers of 115 mg loss versus 125 mg loss and the specification calls out no more than 120 mg loss (more loss is less abrasion resistance), the one with 125 mg loss does not meet the specification.  From a practical standpoint these two finishes have essentially the same abrasion resistance and their reported abrasion numbers are certainly within the tolerance of the test method. Yet, a perfectly acceptable coating would be disqualified based on a strict interpretation of the specification.  So, a specifier should have a very good working knowledge of performance testing, their meaning, and the significance of reported values when qualifying coatings for use.
Shown below is a chart with some commonly used performance-based standards for primers and finishes used for atmospheric exposure.  This is by no means a complete list.  These referenced methods may change based on end use, such as tank linings, high heat coatings, etc.

Primers

Performance Need Test Method Example of Performance Requirement
Corrosion Resistance (Salt Fog) ASTM B117 <2 mm UC after 500 hours exposure
Corrosion Resistance (Cyclic Prohesion/QUV-A) ASTM D5894 <3 mm UC after 3000 hours exposure
Adhesion ASTM D4541 Minimum 800 psi

 

Finishes

Performance Need Test Method Example of Performance Requirement
Abrasion Resistance (Taber Abrasion) ASTM D4060 150 mg loss using CS17 wheel; 1000 g weight and 1000 cycles
Weathering (QUV-A) ASTM G53 75% gloss retention after 2000 hours

No more than 2 dE color shift

Hardness (Pencil) ASTM D3363 2H

 

Specific Named Products

One of the advantages of specifically named products in a specification is that the specifier (engineer or owner) has already determined that the products listed will satisfy the intent of the specification and the needs of the owner.  These types of specifications will often list competitive products that may be quite similar to each other (equals) or may in fact be quite different from each other.  While the coatings may perform in service similarly, one coating system may have faster dry times or low temperature cure capability that might be favored for a specific set of circumstances.  It is then left up to the contractor to choose the system that best fits the application needs.

In the end, there are no right or wrong specifications.  There are good specs and bad ones and everything in between.  The best ones are those that are well written with minimal ambiguities and fulfill the needs of the owner for the anticipated exposure and the owner’s expectations.

Uncategorized

VSC 1200: An advanced polyurethane industrial maintenance coating with superior long term performance

Inorganic Zinc versus Galvanizing

There is an age old debate regarding galvanizing steel versus using inorganic zinc primers for protection against corrosion in exterior environments.  Below is a selection from a NACE (National Association of Corrosion Engineers) publication discussing the subject. The text is widely accepted as the most comprehensive guide to corrosion engineering.

Excerpt from: NACE Publication; “Corrosion Prevention by Protective Coatings” by Charles Munger; p: 153

“Although inorganic zinc coatings are made with metallic zinc, they should not be considered a metallic coating, e.g., galvanizing. There has been considerable discussion and controversy with regard to inorganic zinc coatings and galvanizing, with most of the proponents of either material taking a rather strong stand in favor of their particular product. Actually, inorganic zinc coatings and galvanizing should not be considered competitive. Rather, they should be considered complementary, since both of them provide an excellent corrosion-resistant application under the conditions where each one operates best.

They are two entirely different concepts of coating, even though they both rely on metallic zinc for the basis of their corrosion resistance. Both are chemically bonded to the metal surface, the galvanizing by an amalgam of zinc and iron, while the inorganic coating is bonded by a chemical compound of iron and silica. Actually galvanizing can be considered an inorganic zinc coating, and in many ways, it will do the same things that an inorganic zinc-rich coating will do.

There are also some basic differences. The zinc in an inorganic zinc coating is not continuous as it is with galvanizing. It is made up of individual zinc particles which are surrounded by and reactive with an inert zinc-silicate matrix. This matrix is very chemically inert and except for strong acids or alkalies, is unreactive with most environmental conditions where coatings would be used. This does not mean that in an acid atmosphere the zinc in the inorganic zinc coating might not be dissolved. However, because it is in a chemical-resistant matrix as discrete particles completely surrounded by the matrix, the solution of the zinc is slowed down in a major way. On the other hand, zinc in galvanizing is pure zinc, and any acid in the atmosphere reacts directly with it with no inhibition of the reaction, as in the case in the inorganic zinc coating. This is an important difference between the two materials and is the reason why, under many difficult corrosion conditions, the inorganic zinc coating will have a much longer life than the galvanizing under the same conditions. This has proven to be the case not only in laboratory testing over a number of years, but also in both industrial and marine atmospheres.

… (3 oz/ft2 hot dip galvanized panels) exposed to two years of tidal conditions (immersed and non-immersed) showed almost complete breakdown by pinpoint rusting; compared to (3 mils) of inorganic zinc coated panels with no appreciable corrosion.

Inasmuch as the zinc in a zinc coating is surrounded and interlocked into an inert matrix, the coating has controlled reactivity and controlled conductivity. (Testing) has shown that the metallic zinc was considerably more reactive than the zinc which was protected by the inorganic zinc matrix.

While galvanized surfaces provided a malleable zinc surface, the inorganic zinc coating, because of the hard, rock-like character of the zinc silicate matrix, results in a much harder and more abrasion resistant coating than metallic zinc. All the above differences generally indicate, on an exposure-for-exposure basis, that the inorganic zinc will tend to have a longer life span under more conditions than will the normally galvanized steel surface.”

SUMMARY

So what does this all mean for my project? An inorganic zinc coating offers both chemical and galvanic protection with that a 1 mil layer pure zinc used in the galvanizing process cannot and does not offer the abrasion and chemical protection of an inorganic zinc primers.

Uncategorized

VSC 1200: An advanced polyurethane industrial maintenance coating with superior long term performance

Comparing and testing generic topcoats for exterior use

One of the important factors a buyer considers during the paint buying process is how well topcoats perform during their service.

Also known as weathering finishes, these coatings are designed for ultraviolet (UV) exposure during exterior use. They’re common in any industry that requires equipment or structures to be used or kept outdoors. Topcoats are the first line of defense against the elements, providing protection to intermediate coats which are designed to protect primers.

And it’s important to note right away that there’s no such thing as a coating that doesn’t weather. All coatings fade and break down eventually. With a greater understanding of topcoat formulations and quality testing methods, you’re empowered to make the choice that offers the best protection for your critical assets.

Accelerated weathering testing

In these tests, UV and moisture exposure is simulated in controlled settings over abbreviated time frames to judge how well coatings stand up to the elements. This is a preferred method for testing and comparing weathering finishes because it’s impractical to rely on real-time field tests that would take years to complete.

However, accelerated weathering testing is an imperfect method that requires strict controls and an understanding that actual results may vary in the field. Consider these practical issues:

  • The UV lamps used to simulate sunlight in these tests emit radiation only in a very narrow bandwidth compared to the broad-spectrum UV radiation produced by the sun.
  • Proper testing in controlled conditions cannot replicate or predict the diversity of ever-changing operating conditions in the field.
  • There’s no accurate way to translate results from accelerated weathering testing to actual useful service lives for coatings in the field. The testing should only be used to compare coatings against one another in similar conditions.

Comparing coating formulations

Tests conducted on weathering finishes are designed to shed light on a few different things, such as:

  • Resin quality – Resins are key components in coatings because they form the matrices that hold color pigments in place. When testing coatings to judge the quality of their resins, it’s best to use white or light-colored formulas that lack color pigments. That’s because differing color pigments degrade at differing rates, and that could skew the results of tests targeting resins.
  • Color fastness – Not all pigments are created equal—even like-colored pigments. For example, the red pigments used to color a muscle car are of far higher quality than those used in other, shorter-term applications. When testing for color fastness, choose formulations with similar resin quality so that resin degradation doesn’t interfere with pigments.
  • Gloss retention – When comparing the rate at which gloss loss occurs in a coating, it’s critical that the angles to which lamps are set remain constant. Differing angles alter the way light impacts a painted surface, and results will not be reliable.

It’s important to maintain other constants in tests, too, like film thickness, application method, curing conditions, testing exposure cycles and testing surface preparation. Ignoring experimental controls allows too many variables to interfere with test results.

Performance benchmarks

The Society for Protective Coatings’ (SSPC) standard for two-component weatherable aliphatic polyurethane coatings (SSPC Paint 36) defines three performance levels for weathering finishes.

Level 1 finishes are rated based on 500-hour exposures during accelerated weathering tests. Level 2 finishes are rated based on 1,000-hour tests. Level 3 finishes are rated based on 2,000-hour tests.

Alkyds or oil-based coatings are typically tested in the 250 – 1,000 hour range; most of these coatings sustain significant gloss loss at the high end of this range.

Epoxies lose gloss quickly and begin to chalk after a couple hundred hours of exposure.

Acrylic formulations can vary widely, but they typically hold gloss for between 1,000 and 2,000 hours.

Polyurethanes are even more variable in formulation than acrylics and are commonly tested for several thousand hours. Polyurethane clear coats care often tested into the 5,000 hour range.

Siloxanes and fluorourethanes known as “ultra-weatherables” have shown impressive gloss retention even after 9,000 hours of accelerated weathering testing.

Comparing US Coatings finishes

US Coatings offers many weathering finishes. Buyers need to carefully consider all aspects of an asset or structure prior to choosing a weathering finish, including:

  • The intended use of the asset and whether such a finish is even appropriate.
  • Whether the aesthetic appeal of an asset is important to its end use.
  • Whether a such a finish is being used in conjunction with other coatings or asset protection systems.
  • How frequently you expect to re-coat the asset.

Use the chart below to determine which US Coatings product is the best match for your exposed assets:

We’re here to help you answer any questions you may have. If you want to talk through your options further, let’s talk. You can also explore our products in greater detail by downloading our product data sheets here.

Choosing the right weathering finish is just one step in assuring your next painting project goes off smoothly. In this guide, we take you through all the elements of a productive —and painless— industrial painting program.

Uncategorized

VSC 1200: An advanced polyurethane industrial maintenance coating with superior long term performance

Recoating aged and weathered coatings when proper prep is not always an option.

MasticGrip 2500 is a surface tolerant, aluminum flake filled, mastic epoxy which can act as primer or finish.

MasticGrip 2500  is an aluminum pigmented, low-stress, high-solids mastic with outstanding performance properties and offers . It has unique properties over conventional coatings because it wets out existing rust down to the steel substrate. MasticGrip 2500 coating in a number of industrial markets. Today it continues to provide unmatched levels of barrier protection and corrosion resistance over existing finishes and rusted steel; or is suitable for hand or power tool cleaned surfaces.

MasticGrip 2500: What is the Labyrinth Effect?

The Labyrinth effect essentially creates complex maze for moisture to not easily penetrate the coating. This is important because the rate of osmosis is a critical component to premature coating failure. MasticGrip 2500 utilizes aluminum flakes of various sizes which acts similar to a coat of armor for your substrate. The protection is effective against everyday abuse from UV, water, and chemicals.

Why use MasticGrip 2500 as a “everywhere” primer?

The low viscosity formulation enables it to wet out and penetrate rust down to the substrate, yet it’s high solids allows it to bond to a variety of aged coatings without crazing or lifting. In short, MasticGrip 2500 is the most dependable, robust protection for maintenance painting available. It’s the best primer choice for aged, weathered coatings that can’t be mechanically abraded. This primer/finish is the perfect solution for owner you would like to get five to ten more years out of an asset before a complete repaint down to bare steel.

Uncategorized

VSC 1200: An advanced polyurethane industrial maintenance coating with superior long term performance

RustGrip 2300 is designed to minimize prep when time and resources are limited

RUSTGRIP 2300 is a highly cross-linked penetrating primer/sealer with superior wetting properties. Its a 100% solids epoxy, and will not lift existing coatings yet, allows any topcoat to be overcoated. It is highly flexible with good chemical and solvent resistance, and accepts a variety of topcoats. Recommended use as primer/sealer for marginally prepared steel and over aged coatings. Its excellent wetting properties allows it to penetrate rust and discontinuities in existing coatings and provides a firm anchorage for a variety of topcoats.

RustGrip 2300: The primer that breaks all the rules…

Do you have tightly adhered, aged coating, or weathered steel with tight rust?

Scrape it, clean it, and prime with RustGrip 2300. Its low viscosity formulation enables it to bond to surfaces that heavier pigmented coatings cannot. Even an hour after it is applied it continues to wetout and seal down light surface chalking and tight rust.

It’s the only primer choice for aged, weathered coatings that can’t be mechanically abraded. This primer is the perfect solution for owner you would like to get five to ten more years out of an asset before a complete repaint down to bare steel.

Rusting storage tank at a chemicle plant.

RustGrip 2300 Flyer

Uncategorized

VSC 1200: An advanced polyurethane industrial maintenance coating with superior long term performance

US Coatings offers prefabricated hazardous material storage buildings

US Coatings is enhancing customers’ ability to comply with hazardous material storage and containment requirements by offering prefabricated hazardous material storage buildings.

Industrial firms rely on these structures to safely store dangerous corrosive, flammable, combustible or other hazardous materials that they must keep in or near their facilities.

US Coatings offers a wide range of free-standing, relocatable prefabricated hazardous material storage buildings to meet any facility’s need. Structures available include:

  • Non-combustible steel construction – Designed to store flammable or combustible liquids and other hazardous materials, these structures feature exterior weatherproof unitized non-combustible steel construction made with welded structural and heavy-gauge steel sheets.
  • Two-hour fire-rated uni-directional – These structures are designed to store flammable, combustible, corrosive and poisonous materials and incorporate weatherproof two-hour fire-rated non-combustible heavy-gauge steel construction. The design includes layers of UL-Classified fire-resistant gypsum wallboard between the exterior steel and interior galvannealed steel sheets.
  • Two-hour fire-rated bi-directional – This model safely contains drums, compressed gas cylinders, bottles and other hazardous material containers. It features weatherproof bi-directional two-hour fire-rated non-combustible heavy-gauge steel construction and includes layers of fire-resistant gypsum wallboard, insulation and galvannealed interior and exterior steel sheets. The structure meets UL Fire Resistance Rating U425.
  • Four-hour fire-rated bi-directional – This structure is designed to contain drums, totes, compressed gas cylinders, bottles or other hazardous material containers when they must be stored very close to other buildings or within a larger structure. It meets UL Fire Resistance Rating U490 and features bi-directional four-hour fire-rated non-combustible heavy-gauge steel construction with insulation and two layers of UL-Classified Ultracode fire-resistant gypsum wallboard. Exterior surfaces are made of corrosion-resistant galvannealed steel sheets.

Additional standard features

All prefabricated hazardous material storage buildings we offer also come with the following features:

  • Screened air inlet vents with UL-Classified three-hour fire-rated dampers.
  • Open channel building base to allow for under-building inspections and for forklift and crane sling transit.
  • Internal spill containment capacity of 30 percent of the total storage capacity.
  • Hold-down brackets to bolt structures to foundations to resist seismic and wind loads.
  • Static ground system including an exterior grounding connection, grounding rod, copper conductor and grounding lugs.
  • DOT hazard placard.

All buildings are Factory Mutual-approved and labeled and meet all state and municipal building code requirements.

Customize your prefabricated hazardous material storage building

We know one size doesn’t fit all. That’s why we offer customization options for customers whose unique hazardous material storage needs require individual solutions.

Using modular construction, we build units up to ten feet tall and offer widths of 6 – 14 feet in two-foot increments. We can also vary the lengths of your structure, starting at 8 feet long and topping out at 52 feet, also in two-foot increments.

Optional temperature control systems and explosion relief vents that comply with NFPA 68 are also available on all US Coatings prefabricated hazardous material storage buildings.

Request a consultation

If you’re facing a hazardous material storage requirement, we want to guide you to the solution that best fits your need. Let’s talk — together, we’ll identify the building and accessories that ensure your hazardous materials are kept secure and your personnel and assets are protected.

 

Uncategorized

VSC 1200: An advanced polyurethane industrial maintenance coating with superior long term performance

Our free Building Product Specifications have been written by CSI experts and are available in the CSI 3-part and the Canadian CSC formats for building and construction professionals. Our 09 67 00 Fluid-Applied Flooring specifications are available to download in DOC, or PDF format and come complete technical data profiles, applicable ASTM standards, performance features and product attributes.

Uncategorized

VSC 1200: An advanced polyurethane industrial maintenance coating with superior long term performance

Apellix, the safety partner for the technological revolution, is proud to announce that its Smart Bee™ aerial robot was named an Innovation of the Year award winner at the Materials Performance annual Readers’ Choice Corrosion Innovation of the Year Awards. A software-controlled quadcopter (drone) that tests paint thickness on structures at heights up to 150’, the Smart Bee was selected by corrosion control professionals worldwide as the winner of the Computer Assisted DFT Measurement Drone in the testing category.

Recognizing the most timely and useful innovations in the field of corrosion control worldwide, the awards, sponsored by NACE International, are judged by a distinguished panel of corrosion experts who reviewed innovations developed by individuals, companies, and organizations from around the world.

The Smart Bee is the first commercial application from Apellix based on its patented software-controlled aerial robotics platform. It takes dry film thickness (DFT) measurements consistent with SSPC-PA2 standards featuring the Fischer Technology, Inc. DUALSCOPE FMP 40C system. The Smart Bee can record DFT measurements on surfaces up to 150’ above the ground, eliminating the need for scaffolding and cranes, keeping workers safely on the ground, and increasing productivity by 15x, all while automatically recording every measurement with the time, date, photo confirmation, and additional project data.

The Smart Bee is currently available on a limited basis to industry partners who will participate in development of future enhancements, including DFT Measurement on non-ferrous surfaces.

 

Apellix expects to release a beta version of its Worker Bee™ solution – a spray painting drone that can coat between 5,000 and 12,000 square feet per hour on elevated structures up to 100’ – to industry partners in Q4 2017. The company is also working with several construction engineering firms to develop additional applications of the aerial robotics platform.

About Apellix

Apellix, an early-stage software company based in Jacksonville, Florida, develops software and other tools to precisely control and allow its custom-built aerial robots to perform tasks that are otherwise dangerous or difficult for humans to perform.

Please contact US Coatings for more information or if you have possible use cases.

Contact us